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Figure 1. Ligand-Dependent Nuclear Receptor Regulatory Transcription Complex Assembly

This is Figure 1 from Geistlinger et al. [11].
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suppresses RNA silencing and a 21 nucleotide smallHow to Silence Silencing
interfering (si)RNA.

RNA silencing is part of an innate defense strategy
against viruses in plants [3]. Both suppressor proteinsTwo recent reports [1, 2] describe the stunning crystal

structures of complexes between a viral protein that come from plant viruses belonging to the Tombusvirus
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Figure 1. The Structure of the p19-siRNA
Complex

The p19 dimer cradles the siRNA duplex with
the concave surface of a � sheet and caps
the duplex ends with two projecting � helices.
Individual monomers of the p19 dimer are col-
ored blue and magenta. The RNA and the two
tryptophans from each monomer of the p19
dimer bracket the terminal base pairs at either
end of the siRNA duplex and are shown in
space-filling representation. Phosphate atoms
of RNA are colored red. I am grateful to K. Ye
and D. Patel (Sloan Kettering Institute) for
allowing me to reproduce this drawing.

genus: one from Tomato bushy stunt virus (TBSV) [2] center part of the double-stranded RNA. The fold of the
protein is unusual; it is very different from the �����(which is the type member of the genus and a virus

with historical importance in crystallography [4]) and the fold of several double-stranded binding proteins [11] or
from the OB fold recently found rather close to the RNAsecond from the carnation strain of TBSV called the

Carnation Italian ringspot virus (CIRV) [1]. Those icosa- binding motif present in the Argonaute2 Paz, also part
of the RNAi machinery [12]. Vargason and coworkershedral viruses have positive sense single-stranded RNA

genomes with five open reading frames, the fifth one [1] found a similarity in topology with the ribosomal pro-
tein L1 (if one assumes a circular permutation) [13]. Thebeing a 19 kDa protein (p19), the function of which has

been unknown for a long time. Recently, it was shown diversity in viral suppressors of silencing has already
been noticed and attributed to evolutionary conver-that the 19 kDa protein, like other so-called viral patho-

genecity determinants of many viruses, suppresses gence [3]. Circularly permuted proteins, not a rare occur-
rence in nature, are thought to arise mainly through geneposttranscriptional gene silencing [5]. Simultaneously,

it was noticed that RNA molecules 21–23 nucleotides duplication or exon shuffling [14].
Dimerization of the protein places tryptophans W39in length accumulated in cells with gene silencing activ-

ity [6]. Similarly, in animals undergoing RNA interference, and W42, separated by one �-helical turn, symmetrically
so that the terminal base pairs of the double-stranded21–23 nt RNAs were isolated and found to be associated

with a sequence-specific nuclease activity, the RNA- 19 bp RNA helix can stack below them on either side (see
Figure 1). Only the second tryptophan, W42, stacked oninduced silencing complex (RISC) [6–8]. Later, the pro-

tein responsible for the processing of double-stranded the 5� end base, is conserved. In addition, W42 is framed
by two conserved residues that form important con-RNAs into 21–23 nt RNAs was assigned to the RNase

III-related protein, Dicer, in Drosophila [9]. In 2002, Sil- tacts: R43 interacts with the 2 nt 3� end overhang, and
E41 forms a conserved salt bridge with R75 in the �havy and coworkers [10] showed that p19 binds 21 nt

synthetic double-stranded RNAs with 2-nt long 3� over- sheet. Overall, there are three salt bridges between con-
served residues, and all of these occur at the interfacehanging ends in vitro. They concluded that the silencing

suppression mediated by p19 is due to a depletion of the between the N- and C-terminal domains of p19 [1]. W39
is semiconserved and can be replaced with arginine,21–23 nt dsRNAs generated by the posttranscriptional

gene silencing processes. The two crystal structures [1, not a surprising observation, but it can also be replaced
by serine and leucine.2] highlighted below reveal how the p19 protein recog-

nizes and binds 21 nt dsRNAs. The RNA duplex is regular, with no distortion in one
crystal structure but with a 40� bend in the other one.Each complex contains a 19 bp RNA duplex with two

uridines dangling at the 3� ends. Such RNAs are the Similarly, although in one case the 2 nt 3� dangling resi-
dues were observed in the electron density with preciseproducts (siRNAs) that result when the ribonuclease

DICER processes double-stranded RNAs. One complex contacts with the protein, this was not the case in the
other crystal structure. It is unclear, however, whetherwas solved at 2.5 Å [1], and the other was solved at

1.85 Å [2]. The two proteins are very similar (with 12 these differences are really meaningful. Indeed, the
space groups of the crystals are different (P6122 [1]amino acid changes among the 172 residues). The p19

proteins bind as a dimer to the 21 nt siRNA. The mono- and R32 [2]) and in one (R32), the asymmetric unit is a
monomer of p19 with one RNA strand, whereas in themer is composed of a four-stranded � sheet stacked

on three � helices (��� sandwich), and the dimerization other crystal (P6122), the dimeric complex forms the
asymmetric unit. However, in both cases the RNA canleads to an eight-stranded � sheet forming a concave

surface that binds to the shallow minor groove in the bind in two ways about the RNA pseudo-dyad axis
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(which is coincident in R32 with a crystallographic 2-fold RNA is not fully dehydrated in the bound state and that
and with a pseudo-2-fold in P6122). The end result is it is only partially dehydrated during the recognition pro-
that, in the two crystals, the double-stranded RNA is cess. Similar conclusions were reached for the binding
present twice at half occupancy. Interestingly, in the of antibiotics to RNA molecules [17].
hexagonal crystal, the RNA sequence is almost a palin- Both papers constitute marvelous examples of struc-
drome (with the central base pair being a C...C opposi- tural biology at its best. Furthermore, these two structures
tion), whereas it is not in the rhombohedral crystal. The have numerous implications for our further understanding
different crystal packings, the symmetry considerations, of the mechanisms of silencing and its suppression. They
and the presence of a C…C opposition in the center of open also the way to the use of p19 protein for sup-
one siRNA may limit the structural comparisons between pressing silencing in heterologous systems.
the two siRNAs.

Thus, the protein architecture accommodates the en-
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Centre National de la Recherche Scientifiqueindependent of the RNA sequence. Indeed, as is the
Université Louis Pasteurcase for many dsRNA binding proteins [11], the lack of
15 rue René Descartessequence specificity is a component of the molecular
F-67084 Strasbourg Cedexrecognition modes. Most of the recognition contacts
Francebetween the protein and the RNA occur via the phos-

phate groups and the RNA specific O2� hydroxyl group,
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